Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 180 Suppl 2: S145-S222, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123150

RESUMO

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and over 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org/), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16178. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos/química , Ligantes , Receptores Acoplados a Proteínas G , Bases de Dados Factuais
2.
Br J Pharmacol ; 178 Suppl 1: S157-S245, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34529831

RESUMO

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15539. Ion channels are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Assuntos
Bases de Dados de Produtos Farmacêuticos , Farmacologia , Humanos , Canais Iônicos , Bases de Conhecimento , Ligantes , Receptores Acoplados a Proteínas G
3.
Planta ; 226(6): 1459-73, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17661078

RESUMO

The aim of the present study was to isolate clones of genes which are likely to be involved in wax deposition on barley leaves. Of particular interest were those genes which encode proteins that take part in the synthesis and further modification of very long chain fatty acids (VLCFAs), the precursors of waxes. Previously, it had been shown that wax deposition commences within a spatially well-defined developmental zone along the growing barley leaf (Richardson et al. in Planta 222:472-483, 2005). In the present study, a barley microarray approach was used to screen for candidate contig-sequences (www.barleybase.org) that are expressed particularly in those leaf zones where wax deposition occurs and which are expressed specifically within the epidermis, the site of wax synthesis. Candidate contigs were used to screen an established in-house cDNA library of barley. Six full-length coding sequences clones were isolated. Based on sequence homologies, three clones were related to Arabidopsis CER6/CUT1, and these clones were termed HvCUT1;1, HvCUT1;2 and HvCUT1;3. A fourth clone, which was related to Arabidopsis Fiddlehead (FDH), was termed HvFDH1;1. These clones are likely to be involved in synthesis of VLCFAs. A fifth and sixth clone were related to Arabidopsis CER1, and were termed HvCER1;1 and HvCER1;2. These clones are likely to be involved in the decarbonylation pathway of VLCFAs. Semi-quantitative RT-PCR confirmed microarray expression data. In addition, expression analyses at 10-mm resolution along the blade suggest that HvCUT1;1 (and possibly HvCUT1;2) and HvCER1;1 are involved in commencement of wax deposition during barley leaf epidermal cell development.


Assuntos
Genes de Plantas , Hordeum/genética , Ceras/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
4.
Planta ; 225(6): 1471-81, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17171372

RESUMO

The developing leaf three of barley provides an excellent model system for the direct determination of relationships between amounts of waxes and cutin and cuticular permeance. Permeance of the cuticle was assessed via the time-course of uptake of either toluidine blue or (14)C-labelled benzoic acid ([(14)C] BA) along the length of the developing leaf. Toluidine blue uptake only occurred within the region 0-25 mm from the point of leaf insertion (POLI). Resistance--the inverse of permeance--to uptake of [(14)C] BA was determined for four leaf regions and was lowest in the region 10-20 mm above POLI. At 20-30 and 50-60 mm above POLI, it increased by factors of 6 and a further 32, respectively. Above the point of emergence of leaf three from the sheath of leaf two, which was 76-80 mm above POLI, resistance was as high as at 50-60 mm above POLI. GC-FID/MS analyses of wax and cutin showed that: (1) the initial seven fold increase in cuticular resistance coincided with increase in cutin coverage and appearance of waxes; (2) the second, larger and final increase in cuticle resistance was accompanied by an increase in wax coverage, whereas cutin coverage remained unchanged; (3) cutin deposition in barley leaf epidermis occurred in parallel with cell elongation, whereas deposition of significant amounts of wax commenced as cells ceased to elongate.


Assuntos
Hordeum/metabolismo , Lipídeos de Membrana/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Ceras/metabolismo , Fatores de Tempo
5.
Planta ; 222(3): 472-83, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15940461

RESUMO

In grasses, leaf cells divide and expand within the sheaths of older leaves, where the micro-environment differs from the open atmosphere. By the time epidermal cells are displaced into the atmosphere, they must have a functional cuticle to minimize uncontrolled water loss. In the present study, gas chromatography and scanning electron microscopy were used to follow cuticular wax deposition along the growing leaf three of barley (Hordeum vulgare L.). 1-Hexacosanol (C(26) alcohol) comprised more than 75% of extractable cuticular wax and was used as a marker for wax deposition. There was no detectable wax along the first 20 mm from the point of leaf insertion. Deposition started within the distal portion of the elongation zone (23-45 mm) and continued beyond the point of leaf emergence from the sheath of leaf two. The region where wax deposition commenced shifted towards more proximal (basal) positions when the point of leaf emergence was lowered by stripping back part of the sheath. When relative humidity in the shoot environment was elevated from 70% (standard growth conditions) to 92-96% for up to 4 days prior to analysis, wax deposition did not change significantly. The results show that cuticular waxes are deposited along the growing grass leaf independent of cell age or developmental stage. Instead, the reference point for wax deposition appears to be the point of emergence of cells into the atmosphere. The possibility of changes in relative humidity between enclosed and emerged leaf regions triggering wax deposition is discussed.


Assuntos
Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Epiderme Vegetal/citologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Ceras/metabolismo , Hordeum/citologia , Hordeum/ultraestrutura , Umidade , Epiderme Vegetal/metabolismo , Folhas de Planta/citologia , Folhas de Planta/ultraestrutura
6.
Plant J ; 37(5): 730-40, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14871312

RESUMO

The irregular xylem 2 (irx2) mutant of Arabidopsis thaliana exhibits a cellulose deficiency in the secondary cell wall, which is brought about by a point mutation in the KORRIGAN (KOR) beta,1-4 endoglucanase (beta,1-4 EGase) gene. Measurement of the total crystalline cellulose in the inflorescence stem indicates that the irx2 mutant contains approximately 30% of the level present in the wild type (WT). Fourier-Transform Infra Red (FTIR) analysis, however, indicates that there is no decrease in cellulose in primary cell walls of the cortical and epidermal cells of the stem. KOR expression is correlated with cellulose synthesis and is highly expressed in cells synthesising a secondary cell wall. Co-precipitation experiments, using either an epitope-tagged form of KOR or IRX3 (AtCesA7), suggest that KOR is not an integral part of the cellulose synthase complex. These data are supported by immunolocalisation of KOR that suggests that KOR does not localise to sites of secondary cell wall deposition in the developing xylem. The defect in irx2 plant is consistent with a role for KOR in the later stages of secondary cell wall formation, suggesting a role in processing of the growing microfibrils or release of the cellulose synthase complex.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Glucosiltransferases/genética , Proteínas de Membrana/genética , Alelos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/genética , Parede Celular/fisiologia , Celulase , Celulose/biossíntese , Mapeamento Cromossômico , Teste de Complementação Genética , Glucosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Fenótipo , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...